Comparing Shrink/Swell and Conditioned Core Shrink tests

MAY 2020

D. LOPES

Soil Instability Index (Ips)

Instability indices are the ratio of Strain to Suction. Ideally both values should be measured.

To do so one needs a well practiced method and a Psychrometer.

Graphs are produced from which Moisture, Strain and Suction are read.

Using the graphs and surface suction range the *I*ps can be calculated for any condition.

/ps are not the same at different suction ranges. This is because the strain V suction is not linear.

Adequate testing of moisture and suction in similar soils can allow one value to estimate the other very well.

A see

Comparisons of the Shrink/Swell, Conditioned Core Shrink & Soil-Water Characteristic Curve tests.

Shrink/swell test (S/S)		Conditioned Core Shrinkage (CCS) & (SWCC) tests
1	Sampled with 50 mm ø tubes and difficult to push in dry soils.	Sampled with 38 mm ø tubes easier and cheaper to push.
2	Gives different results at different soil moistures.	Conditioned to an initial suction of 3.0 -3.3pF by drying or wetting.
3	Ips is calculated over a Δ us of 1.8pF but only 1.2pF is used.	Ips is calculated (not estimated) over the correct site suction range.
4	The S/S formula assumes a linear Shrink V Suction relationship.	U.S. researchers have shown that this is only true from 3 to 4pF.
5	A linear assumption overestimates I_{ps} in wet or underestimates in dry.	The CCS graph gives the Ips from actual suction/shrink relationships.
6	The S/S is made up of 2 test which are joined (difficult to do).	Shrink is measured over the actual field range of the climate zone.
7	The swell is only measured in 1D and changed to 2D by ÷ by 2?	Shrink is measured only over the necessary range.
8	The swell part of the test is time-consuming so is often cut short.	The CCS test can produce accurate results in 5-7 days at lower cost.
10	The S/S test does not measure suctions and swell only at >field moisture.	Shrink is measured in the graph saving time and giving a greater accuracy.
11	Suction/Strain/moisture graphs are not produced from this test.	Simple readings produce accurate suction/shrink/moisture graphs.
12		Graphs are drawn by Microsoft XL polynomials for lines of best fit.
13		SWCC are drawn from CCS by measuring weights at each suction reading.
14		SWCC graphs are ideal for footing designs in 'P' sites and forensic work.
15		CCS graphs are used to calculate <i>I</i> ps and <i>y</i> s without approximations.
16		SWCC graphs can predict past and possible future moisture changes.